Question : If $\left ( a+\frac{1}{a} \right )^{2}=3$, then the value of $\left ( a^{2}+\frac{1}{a^{2}} \right )$ will be:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 3
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $(a+\frac{1}{a})^2=3$ Expanding the left side of the equation: ⇒ $a^2 + 2(a)(\frac{1}{a}) + \left(\frac{1}{a}\right)^2 = 3$ ⇒ $a^2 + 2 + \frac{1}{a^2} = 3$ ⇒ $a^2 + \frac{1}{a^2} = 3 - 2$ ⇒ $a^2 + \frac{1}{a^2} = 1$ Therefore, the value of $a^2 + \frac{1}{a^2}$ is 1. Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{1}{x^2+a^2}=x^2-a^2$, then the value of $x$ is:
Question : If $\left (a+\frac{1}{b} \right)=1$ and $\left (b+\frac{1}{c} \right)=1$, the value of $\left (c+\frac{1}{a} \right)$ is:
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{\left (3y^{2}+x^{2}+z^{2} \right )}{\left (2y^{2}-xz \right)}$?
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile