Question : If $(a+\frac{1}{a})^{2}=3$, then the value of $(a^{6}-\frac{1}{a^{6}})$ will be:
Option 1: 1
Option 2: 3
Option 3: 0
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 0
Solution : Given: $(a+\frac{1}{a})^{2}=3$ $\therefore (a+\frac{1}{a})=\sqrt3$ Cubing both sides, we get $a^3+\frac{1}{a^3}+3×a×\frac{1}{a}(a+\frac{1}{a})=3\sqrt3$ ⇒ $a^3+\frac{1}{a^3}+3(\sqrt3)=3\sqrt3$ ⇒ $a^3+\frac{1}{a^3}=3\sqrt3-3\sqrt3=0$ To find: $(a^{6}-\frac{1}{a^{6}})$ $(a^{6}-\frac{1}{a^{6}})=(a^{3}-\frac{1}{a^{3}})$$(a^{3}+\frac{1}{a^{3}})$ Putting the value of $a^3+\frac{1}{a^3}$, we get $(a^{6}-\frac{1}{a^{6}})=(a^{3}-\frac{1}{a^{3}})×0$ ⇒ $(a^{6}-\frac{1}{a^{6}})=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $a+\frac{1}{a}=2$, then the value of $(a^{5}+\frac{1}{a^{5}})$ will be:
Question : If $\frac{a}{b}+\frac{b}{a}=1$, then the value of $a^{3}+b^{3}$ will be:
Question : If $\left ( a+\frac{1}{a} \right )^{2}=3$, then the value of $\left ( a^{2}+\frac{1}{a^{2}} \right )$ will be:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $(a+\frac{1}{a})^{2}=3$, then the value of $a^{18}+a^{12}+a^{6}+1$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile