Question : If $\cos x+\sec x=\frac{7}{2 \sqrt{3}}$, then the value of $\cos ^2 x+\sec ^2 x$ will be_____.
Option 1: $\frac{15}{12}$
Option 2: $\frac{10}{12}$
Option 3: $\frac{25}{10}$
Option 4: $\frac{25}{12}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{25}{12}$
Solution : Given: $\cos x+\sec x=\frac{7}{2 \sqrt{3}}$ Squaring both sides, $(\cos x+\sec x)^2=(\frac{7}{2 \sqrt{3}})^2$ ⇒ $\cos^2 x+\sec^2 x +2= \frac{49}{12}$ (Since $\cos x×\sec x=1)$ ⇒ $\cos^2 x+\sec^2 x = \frac{49}{12}-2$ ⇒ $\cos^2 x+\sec^2 x= \frac{25}{12}$ Hence, the correct answer is $\frac{25}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sec x- \cos x$ = 4, then what will be the value of $\frac{\left(1+\cos ^2x\right)}{\cos x}?$
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile