Question : If $a+\frac{1}{a}=2$, then the value of $(a^{5}+\frac{1}{a^{5}})$ will be:
Option 1: 0
Option 2: 1
Option 3: 3
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : Given: $a+\frac{1}{a} = 2$ If we take $a=1$, then LHS = $1+\frac{1}{1}=2$ = RHS So, $a=1$ satisfies the equation. Now, $a^5+\frac{1}{a^5}=1^5+\frac{1}{1^5}=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : What is the value of $\left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)$, if $\frac{2a - 5}{a} - \frac{4b - 5}{b} + \frac{6c + 5}{c} = 0$?
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Question : If $(a+\frac{1}{a})^{2}=3$, then the value of $(a^{6}-\frac{1}{a^{6}})$ will be:
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $\sec A=\frac{5}{4}$, then the value of $\frac{\tan A}{1+\tan ^2 A}-\frac{\sin A}{\sec A}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile