Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Option 1: $\frac{\sqrt{7}}{4}$
Option 2: $\frac{\sqrt{7}}{3}$
Option 3: $\frac{\sqrt{5}}{3}$
Option 4: $\frac{\sqrt{5}}{2}$
Correct Answer: $\frac{\sqrt{7}}{3}$
Solution : Given: $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$ (equation 1) Squaring both sides of the equation 1, we get, $(\sin \theta+\cos \theta)^2=(\frac{\sqrt{11}}{3})^2$ ⇒ $\sin^2 \theta+\cos^2 \theta+2\sin \theta \cos \theta=\frac{11}{9}$ ⇒ $1+2\sin \theta \cos \theta=\frac{11}{9}$ ⇒ $2\sin \theta \cos \theta=\frac{11}{9}-1$ ⇒ $2\sin \theta \cos \theta=\frac{2}{9}$ (equation 2) Substitute the value from the equation 2, $(\sin \theta-\cos \theta)^2=\sin^2 \theta+\cos^2 \theta–2\sin \theta \cos \theta$ ⇒ $(\sin \theta-\cos \theta)^2=1–\frac{2}{9}$ ⇒ $(\sin \theta-\cos \theta)^2=\frac{7}{9}$ ⇒ $(\sin \theta-\cos \theta)=\sqrt{\frac{7}{9}}$ $\therefore (\sin \theta–\cos \theta)=\frac{\sqrt7}{3}$ Hence, the correct answer is $\frac{\sqrt7}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$, then find $\frac{\sin \theta-\cos \theta}{\sin \theta}$:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$, then $(\cos \theta+\sin \theta)$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile