15 Views
Question : If $\frac{P}{2}=\frac{Q}{5}=\frac{R}{6}$, then what is the value of $P^2:(P+Q)^2:(Q+R)^2$?
Option 1: 10 : 56 : 169
Option 2: 4 : 49 : 121
Option 3: 9 : 64 : 144
Option 4: 16 : 10 : 125
Answer (1)
Correct Answer: 4 : 49 : 121
Solution : Given: The expression is $\frac{P}{2}=\frac{Q}{5}=\frac{R}{6}$.
Let $\frac{P}{2}=\frac{Q}{5}=\frac{R}{6}=k$.
⇒ $P=2k, Q=5k, R=6k$
The value of $P^2:(P+Q)^2:(Q+R)^2$
$=(2k)^2:(2k+5k)^2:(5k+6k)^2$
$=4k^2:(7k)^2:(11k)^2$
$=4k^2:49k^2:121k^2$
$=4:49:121$
Hence, the correct answer is 4 : 49 : 121.
Know More About
Related Questions
Upcoming Exams
Application Date:
28 May, 2025
- 12 Jun, 2025
Application Date:
6 Jun, 2025
- 26 Jun, 2025
1st Stage CBT
Exam Date:
5 Jun, 2025
- 24 Jun, 2025
Application Date:
28 May, 2025
- 17 Jun, 2025
Application Date:
28 May, 2025
- 17 Jun, 2025