Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Option 1: $\frac{1}{5}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{1}{3}$
Solution : Given: $\sqrt{3} \tan \theta=3 \sin \theta$ ⇒ $\sqrt{3}\times \frac{\sin \theta}{\cos\theta}=3 \sin \theta$ ⇒ $\frac{\sqrt{3}}{3}=\cos\theta$ ⇒ $\cos\theta=\frac{1}{\sqrt3}$ Squaring both sides of the above equation, $\cos^2 \theta=\frac{1}{3}$ (equation 1) We know the trigonometric identity, $\sin ^2 \theta+\cos ^2 \theta=1$. Substitute the value from the equation 1 in the above identity, ⇒ $\sin ^2 \theta+\frac{1}{3}=1$ ⇒ $\sin ^2 \theta=1-\frac{1}{3}$ ⇒ $\sin ^2 \theta=\frac{2}{3}$ The value of $\sin ^2 \theta-\cos ^2 \theta=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$. Hence, the correct answer is $\frac{1}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Question : If $7 \sin ^2 \theta+4 \cos ^2 \theta=5$ and $\theta$ lies in the first quadrant, then what is the value of $\frac{\sqrt{3} \sec \theta+\tan \theta}{\sqrt{2} \cot \theta-\sqrt{3} \cos \theta}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile