Question : If $N= \frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}$, then what is the value of $(N+\frac{1}{N})$?
Option 1: 10
Option 2: 11
Option 3: 12
Option 4: 22
Correct Answer: 22
Solution : Given: $N= \frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}$ $\frac{1}{N}= \frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$ To find: $(N+\frac{1}{N})$ Putting the values, we get: = $\frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}+\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$ = $\frac{(\sqrt6-\sqrt5)^2+(\sqrt6+\sqrt5)^2}{(\sqrt6+\sqrt5)(\sqrt6-\sqrt5)}$ = $\frac{6+5-2\sqrt6\sqrt5+6+5+2\sqrt6\sqrt5}{6-5}$ = 22 Hence, the correct answer is 22.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{N}=\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$, what is the value of $N$?
Question : If $P=\frac{(\sqrt7-\sqrt6)}{(\sqrt7+\sqrt6)}$, then what is the value of $(P+\frac{1}{P})?$
Question : If $\sqrt5=2.236$, then what is the value of $\frac{\sqrt5}{2}+\frac{5}{3\sqrt5}-\sqrt{45}$?
Question : If $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $(N+\frac{1}{N})$?
Question : If $A+\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=\frac{9}{10}$, then the value of A is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile