Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Option 1: 5
Option 2: 25
Option 3: 12
Option 4: 9
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 5
Solution : Given: $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}$ $= \frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}} \times \frac{\sqrt{14-5 \sqrt{3}}}{\sqrt{14-5 \sqrt{3}}} $ $= \frac{\sqrt{364-130\sqrt{3}+105-98\sqrt3}}{\sqrt{196-75}} $ $= \frac{\sqrt{361-228\sqrt{3}+108}}{\sqrt{196-75}} $ $= \frac{\sqrt{19^2+(6\sqrt3)^2-2\times19\times6\sqrt{3}}}{\sqrt{121}} $ $= \frac{\sqrt{(19-6\sqrt3)^2}}{11} $ $= \frac{(19-6\sqrt3)}{11} $ $\therefore \frac{(19-6\sqrt3)}{11}=\frac{b+a \sqrt{3}}{11} $ $b=19, a=-6$ Thus, $\sqrt{(b-a)}=\sqrt{(19-(-6))}=\sqrt{25}=5$ Hence, the correct answer is 5.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$, then the value of $(b-a)$ is:
Question : If $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$, with $a, b>0$, then what is the value of $(a b):(a+b)$?
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile