Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Option 1: $19 \sqrt{7}$
Option 2: $21 \sqrt{7}$
Option 3: $25 \sqrt{7}$
Option 4: $27 \sqrt{7}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $19 \sqrt{7}$
Solution : Given: $x^2-\sqrt{7} x+1=0$ Dividing by $x$, we get: ⇒ $x+\frac{1}{x}=\sqrt{7}$ Now, Squaring both sides, we get: ⇒ $(x+\frac{1}{x})^2=(\sqrt{7})^2$ ⇒ $x^2+\frac{1}{x^2}+2=7$ ⇒ $x^2+\frac{1}{x^2}=5$ Similarly, Cubing both sides, we get: ⇒ $(x+\frac{1}{x})^3=(\sqrt{7})^3$ ⇒ $x^3+\frac{1}{x^3}+3(x\times\frac{1}{x})(x+\frac{1}{x})=7\sqrt7$ ⇒ $x^3+\frac{1}{x^3}+3\sqrt 7=7\sqrt7$ ⇒ $x^3+\frac{1}{x^3}=4\sqrt7$ Now, $x^5+\frac{1}{x^5}=(x^3+\frac{1}{x^3})\times(x^2+\frac{1}{x^2})-(x+\frac{1}{x})$ = $4\sqrt7\times5-\sqrt7$ = $20\sqrt7-\sqrt7$ = $19\sqrt7$ Hence, the correct answer is $19\sqrt7$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $x^2-7 x+1=0$ and $0<x<1$, what is the value of $x^2-\frac{1}{x^2}?$
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile