Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then what is the value of $(3 A-B-\sqrt{15} C)$?
Option 1: –3
Option 2: –5
Option 3: 8
Option 4: 12
Correct Answer: –3
Solution : Given: $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $\frac{(5 \sqrt{5} x^3-3 \sqrt{3} y^3)}{(\sqrt{5} x-\sqrt{3} y)}=\left(A x^2+B y^2+C x y\right)$ ⇒ $\frac{(x\sqrt{5})^3-(y\sqrt{3})^3)}{(\sqrt{5} x-\sqrt{3} y)}=(A x^2+B y^2+C x y)$ ⇒ $\frac{(\sqrt{5}x-\sqrt{3}y)(5x^2+\sqrt{15}xy+3y^2)}{(\sqrt{5} x-\sqrt{3} y)}=(A x^2+B y^2+C x y)$ ⇒ $5x^2+\sqrt{15}xy+3y^2=A x^2+B y^2+C x y$ On comparing, ⇒ $A=5$ ⇒ $B=3$ ⇒ $C=\sqrt{15}$ Now, $(3 A-B-\sqrt{15} C)$ Putting the values, we get: = $(3\times5-3-\sqrt{15}\times\sqrt{15})$ = $(15-3-15)$ = –3 Hence, the correct answer is –3.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : If $\left (\sqrt{5} \right)^{7}\div \left (\sqrt{5} \right)^{5}=5^{p},$ then the value of $p$ is:
Question : The value of $\left(5 \div 2\right.$ of $\left.\frac{1}{2}\right)+\left(5 \frac{1}{4} \div \frac{3}{7}\right.$ of $\left.\frac{1}{2}\right) \div\left(5 \frac{1}{9}-7 \frac{7}{8} \div 9 \frac{9}{20}\right) \times \frac{11}{21}$ is:
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile