Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Option 1: $\frac{3}{8}$
Option 2: $\frac{13}{12}$
Option 3: $\frac{4}{9}$
Option 4: $\frac{11}{13}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{13}{12}$
Solution : Given: $x-\frac{1}{x}=5$ Cubing both sides, we get $(x-\frac{1}{x})^3=5^3$ ⇒ $x^3-\frac{1}{x^3}-3(x\times\frac{1}{x})(x-\frac{1}{x})=125$ ⇒ $x^3-\frac{1}{x^3}-3\times5=125$ ⇒ $x^3-\frac{1}{x^3}=140$ Thus,$\frac{x^6+3 x^3-1}{x^6-8 x^3-1}$ Taking $x^3$ as common, we get: = $\frac{x^3+3-\frac{1}{x^3}}{x^3-8-\frac{1}{ x^3}}$ = $\frac{x^3-\frac{1}{x^3}+3}{x^3-\frac{1}{ x^3}-8}$ Putting the values, we get: = $\frac{140+3}{140-8}$ = $\frac{143}{132}$ = $\frac{13}{12}$ Hence, the correct answer is $\frac{13}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : If $x=\frac{3}{2}$, then the value of $27x^{3}-54x^{2}+36x-11$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile