Question : If $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $(N+\frac{1}{N})$?
Option 1: $2\sqrt2$
Option 2: $5$
Option 3: $10$
Option 4: $13$
Correct Answer: $5$
Solution : $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $N+(\frac{1}{N})$ $\frac{1}{N}=\frac{(\sqrt7+\sqrt3)}{(\sqrt7-\sqrt3)}$ To find: $N+(\frac{1}{N})$ Putting the values, we get: $\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}+\frac{(\sqrt7+\sqrt3)}{(\sqrt7-\sqrt3)}$ = $\frac{(\sqrt7-\sqrt3)^2+(\sqrt7+\sqrt3)^2}{(\sqrt7+\sqrt3)(\sqrt7-\sqrt3)}$ = $\frac{(7+3-2\sqrt7\sqrt3)+(7+3+2\sqrt7\sqrt3)}{(7-3)}$ = $\frac{20}{4}$ = 5 Hence, the correct answer is $5$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $p = 5 + 2\sqrt6$, then $\frac{\sqrt p - 1}{\sqrt p}$ is:
Question : If $P=\frac{(\sqrt7-\sqrt6)}{(\sqrt7+\sqrt6)}$, then what is the value of $(P+\frac{1}{P})?$
Question : If $A+\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=\frac{9}{10}$, then the value of A is:
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : If the area of an equilateral triangle is $a$ and height $b$, then the value of $\frac{b^2}{a}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile