Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Option 1: $1+2 \sqrt{3}$
Option 2: $\frac{1+2 \sqrt{3}}{3}$
Option 3: $\frac{2+\sqrt{3}}{3}$
Option 4: $2+\sqrt{3}$
Correct Answer: $2+\sqrt{3}$
Solution : Given, $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4$ ⇒ $\frac{\cos\theta(1+\sin\theta)+\cos\theta(1-\sin\theta)}{(1+\sin\theta)(1-\sin\theta)}=4$ ⇒ $\frac{\cos\theta+\sin\theta\cos\theta+\cos\theta-\sin\theta\cos\theta}{(1+\sin\theta)(1-\sin\theta)}=4$ ⇒ $\frac{2\cos\theta}{1-\sin^2\theta}=4$ [As $\sin^2\theta+\cos^2\theta=1$] ⇒ $\frac{\cos\theta}{\cos^2\theta}=2$ ⇒ $\cos\theta=\frac{1}{2}$ ⇒ $\theta=60°$ Now, $\sec \theta+\operatorname{cosec} \theta+\cot \theta=\sec60°+\operatorname{cosec}60°+\cot60°$ $=2+\frac{2}{\sqrt3}+\frac1{\sqrt3}$ $=\frac{2\sqrt3+2+1}{\sqrt3}$ $=\frac{2\sqrt3+3}{\sqrt3}$ $=2+\sqrt3$ Hence, the correct answer is $2+\sqrt3$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Question : If $7 \sin ^2 \theta+3 \cos ^2 \theta=4,0^{\circ}<\theta<90^{\circ}$, then the value of $(\tan ^2 2 \theta+\operatorname{cosec}^2 2 \theta)$ is:
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile