Question : If $\cos\theta = \frac{35}{37}$, then what is the value of $\cot \theta$?
Option 1: $\frac{12}{35}$
Option 2: $\frac{35}{12}$
Option 3: $\frac{37}{12}$
Option 4: $\frac{12}{37}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{35}{12}$
Solution : Given: $\cos \theta = \frac{35}{37}$, $\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}}$ Let base = 35k and hypotenuse = 37k Using Pythagoras theorem, $AB =\sqrt{(37k)^{2}-(35k)^{2}} = 12k$ $\therefore\cot \theta = \frac{\text{Base}}{\text{Perpendicular}}$ = $\frac{35}{12}$ Hence, the correct answer is $\frac{35}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Question : If $\frac{(3 \sin \theta-\cos \theta)}{(\cos \theta+\sin \theta)}=1$, then the value of $\cot \theta$ is:
Question : If $8 \cot \theta=6$, then the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile