Question : If $x-\frac{1}{x}=2$, then what is the value of $x^2+\frac{1}{x^2}$?
Option 1: 4
Option 2: 5
Option 3: 3
Option 4: 6
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 6
Solution : Given: $x-\frac{1}{x}=2$ We know that the algebraic identity is $(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2$ $x-\frac{1}{x}=2$ On squaring both sides of the above equation, we get, ⇒ $(x-\frac{1}{x})^2=2^2$ ⇒ $x^2+\frac{1}{x^2}-2=4$ ⇒ $x^2+\frac{1}{x^2}=4+2$ ⇒ $x^2+\frac{1}{x^2}=6$ Hence, the correct answer is 6.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+\frac{1}{x}=5$, then the value of $\frac{x}{1+x+x^2}$ is:
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile