Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$?
Option 1: $0$
Option 2: $xz$
Option 3: $y$
Option 4: $3y$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $y$
Solution : Given: $x+y+z=0$ We know, $x^3+y^3+z^3-3xyz=0$ ⇒ $x^3+y^3+z^3 = 3xyz$ Now, $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$ = $\frac{x^3+y^3+z^3 }{3xz}$ = $\frac{3xyz}{3xz}$ = $y$ Hence, the correct answer is $y$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $x+y+z=0$, then what is the value of $\frac{\left (3y^{2}+x^{2}+z^{2} \right )}{\left (2y^{2}-xz \right)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : If $\small x+3y-\frac{2z}{4}=6, \; x+\frac{2}{3}(2y+3z)=33$ and $\frac{1}{7}(x+y+z)+2z=9,$ then what is the value of $46x+131y$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile