Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Option 1: $\frac{11}{13}$
Option 2: $\frac{13}{11}$
Option 3: $\frac{16}{9}$
Option 4: $\frac{9}{16}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13}{11}$
Solution : Given: $(x-\frac{1}{3})^2+(y-4)^2=0$ $(x-\frac{1}{3})^2=0$ , $(y-4)^2=0$ So, $x=\frac{1}{3}, y=4$ Now, $\frac{y+x}{y-x}=\frac{4+\frac{1}{3}}{4-\frac{1}{3}}=\frac{13}{11}$ Hence, the correct answer is $\frac{13}{11}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(4 y-\frac{4}{y})=13$, find the value of $(y^2+\frac{1}{y^2})$.
Question : If $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$, then what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$?
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $2 x-y=2$ and $x y=\frac{3}{2}$, then what is the value of $x^3-\frac{y^3}{8}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile