Question : If $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$, then what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$?
Option 1: $1$
Option 2: $\frac{13}{11}$
Option 3: $\frac{13}{5}$
Option 4: $4$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4$
Solution : Given: $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$ $⇒\frac{11}{x}-\frac{13x}{x}+\frac{11}{y}-\frac{13y}{y}+\frac{11}{z}-\frac{13z}{z}=5$ $⇒\frac{11}{x}+\frac{11}{x}+\frac{11}{x}-39=5$ $⇒11(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=44$ $\therefore\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{44}{11}=4$ Hence, the correct answer is $4$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile