Question : If $\small a^{3}+3a^{2}+9a=1$, then what is the value of $a^{3}+\frac{3}{a}$?
Option 1: 31
Option 2: 26
Option 3: 28
Option 4: 24
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 28
Solution : $a^{3}+3a^{2}+9a=1$ .......(i) Multiply the equation by $\frac{3}{a}$ both sides, ⇒ $3a^{2}+9a+27=\frac{3}{a}$ ......(ii) Subtracting (ii) from (i), ⇒ $a^{3}-27=1-\frac{3}{a}$ $\therefore a^{3}+\frac{3}{a}=28$ Hence, the correct answer is 28.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $1 \frac{3}{4}+1 \frac{5}{7} \div 2 \frac{3}{7} \times 2 \frac{3}{7}=$?
Question : If $a=26$ and $b=22$, then the value of $\frac{a^3-b^3}{a^2-b^2}-\frac{3 a b}{a+b}$ is_______.
Question : If $a^2+1=9a$ and $a\neq0$, then the value of $a^2+\frac{1}{a^2}$ is:
Question : If $2x-\frac{1}{2x}=5,x\neq0$, then the value of $(x^2+\frac{1}{16x^2}-2)$is:
Question : If $\sin A = \frac{4}{5}$, then what is the value of $\sin^2 A$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile