Question : If $\sqrt{11-3 \sqrt{8}}=a+b \sqrt{2}$, then what is the value of (2a + 3b) ?
Option 1: 7
Option 2: 9
Option 3: 3
Option 4: 5
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 3
Solution : Given: $\sqrt{11-3 \sqrt{8}}=a+b \sqrt{2}$ ⇒ $\sqrt{11-3 \sqrt{2\times2\times2}}=a+b \sqrt{2}$ ⇒ $\sqrt{9+2-2×3\sqrt{2}}=a+b \sqrt{2}$ ⇒ $\sqrt{(3)^2+(\sqrt2)^2-2\times3\sqrt{2}}=a+b \sqrt{2}$ ⇒ $\sqrt{(3-\sqrt{2})^2}=a+b \sqrt{2}$ ⇒ $3-\sqrt{2}=a+b \sqrt{2}$ Comparing both sides, we get, $a=3,b=-1$ Now, $(2a+3b)$ = $(2\times3+3\times(-1))$ = $3$ Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$, with $a, b>0$, then what is the value of $(a b):(a+b)$?
Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$, then the value of $(b-a)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile