Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Option 1: $0$
Option 2: $1$
Option 3: $2$
Option 4: $–1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2$
Solution : Given: $\frac{(x+y)}{z}=2$ ⇒ $y=2z-x$ ⇒ $y-z=z-x$ Now, $[\frac{y}{(y-z)}]+[\frac{x}{(x-z)}]$ = $[\frac{y}{(z-x)}]+[\frac{x}{(x-z)}]$ = $[-\frac{y}{(x-z)}]+[\frac{x}{(x-z)}]$ = $[\frac{-y+x}{(x-z)}]$ = $[\frac{-(2z-x)+x}{(x-z)}]$ [After putting value of $y$] = $[\frac{2(x-z)}{(x-z)}]$ = $2$ Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$?
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Question : If $x+y+z=0$ and $x^2+y^2+z^2=40$, then what is the value of $x y+y z+z x?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile