Question : If $x^{2}-12x+33=0$, then what is the value of $(x-4)^{2}+\frac{1}{(x-4)^{2}}?$
Option 1: $16$
Option 2: $14$
Option 3: $18$
Option 4: $20$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $14$
Solution : Put $(x-4) = m$ ⇒ $x = m+4$ ⇒ $(m + 4)^{2} - 12(m + 4) + 33 = 0$ ⇒ $m^{2} + 16 + 8m - 12m - 48 + 33 = 0$ ⇒ $m^{2}- 4m + 1 = 0$ On dividing the equation by $m$, ⇒ $m + \frac{1}{\text{m}} = 4$ Now putting $(x - 4) = m$ in $(x - 4)^{2} + [\frac{1}{(x - 4)^{2}}]$ ⇒ $m^{2} + \frac{1}{m^{2}} = (m +\frac{1}{m})^{2}-2$ ⇒ $m^{2} + \frac{1}{m^{2}} = 16 -2 = 14$ So, $(x-4)^{2}+\frac{1}{(x-4)^{2}}=14$ Hence, the correct answer is $14$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x+\frac{16}{x}=8$, then the value of $x^2+\frac{32}{x^2}$ is:
Question : If $x^2+\frac{1}{x^2}=7$, then the value of $x^3+\frac{1}{x^3}$ where x > 0 is equal to:
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=34$, what is the value of $x^{3}-\frac{1}{x^{3}} $?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile