Question : If $a^2+\frac{1}{a^2}=\frac{7}{3}$, then what is the value of $\left(a^3-\frac{1}{a^3}\right)?$
Option 1: $\frac{5}{3 \sqrt{3}}$
Option 2: $\frac{10}{3 \sqrt{3}}$
Option 3: $\frac{7}{3 \sqrt{3}}$
Option 4: $\frac{8}{3 \sqrt{3}}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{10}{3 \sqrt{3}}$
Solution : Given: $a^2+\frac{1}{a^2}=\frac{7}{3}$ ⇒ $(a-\frac{1}{a})^2 +2=\frac{7}{3}$ ⇒ $(a-\frac{1}{a})^2=\frac{7}{3} -2$ ⇒ $(a-\frac{1}{a})^2=\frac{1}{3}$ ⇒ $(a-\frac{1}{a})=\frac{1}{\sqrt3}$ Now, $(a-\frac{1}{a})^3=a^3-\frac{1}{a^3}-3×a×\frac{1}{a}(a-\frac{1}{a})$ ⇒ $(\frac{1}{\sqrt 3})^3=a^3-\frac{1}{a^3}-3(\frac{1}{\sqrt 3})$ ⇒ $\frac{1}{3\sqrt 3}=a^3-\frac{1}{a^3}-\sqrt3$ ⇒ $\frac{1}{3\sqrt 3}+\sqrt3=a^3-\frac{1}{a^3}$ ⇒ $\frac{1+9}{3\sqrt 3}=a^3-\frac{1}{a^3}$ ⇒ $a^3-\frac{1}{a^3} = \frac{10}{3\sqrt 3}$ Hence, the correct answer is $\frac{10}{3\sqrt 3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile