Question : If $\sqrt{5x-6}+\sqrt{5x+6}=6$, then what is the value of $x$?
Option 1: – 4
Option 2: 0
Option 3: 2
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $ \sqrt{5x-6}+\sqrt{5x+6}=6$ Squaring both sides, ⇒ $(\sqrt{5x-6}+\sqrt{5x+6})^2=6^2$ ⇒ $(5x-6)+(5x+6)+2(\sqrt{5x-6}\sqrt{5x+6})=36$ ⇒ $10x+2(\sqrt{25x^2-36} )=36$ ⇒ $(\sqrt{25x^2-36} )=18-5x$ Again, squaring both sides, ⇒ $({25x^2-36} )=324+25x^2-180x$ ⇒ $324+36 =180x$ ⇒ $360 =180x$ ⇒ $ x=\frac{360}{180}$ $\therefore x =2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Question : If $x=\sqrt[3]{x^{2}+11} –2$, then the value of $(x^3+5x^2+12x)$ is:
Question : If $\sqrt{x}=\sqrt{3}-\sqrt{5}$, then the value of $x^2-16x+6$ is:
Question : If $(x+\frac{1}{x})^2=3$, then what is the value of $x^6 + x^{–6}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile