Question : If $\left(a+\frac{1}{a}\right)=6$, then what is the value of $\frac{3}{4}\left(a^2+\frac{1}{a^2}\right)$?
Option 1: 22.5
Option 2: 34
Option 3: 25.5
Option 4: 36
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 25.5
Solution : Given that $\left(a+\frac{1}{a}\right)=6$, Squaring both sides, we get, $⇒\left(a+\frac{1}{a}\right)^2 = 6^2$ $⇒a^2 + 2 + \frac{1}{a^2} = 36$ $⇒a^2 + \frac{1}{a^2} = 36 - 2 = 34$ $ \therefore\frac{3}{4}\left(a^2+\frac{1}{a^2}\right) = \frac{3}{4} \times 34 = 25.5$ Hence, the correct answer is 25.5.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $\left(x-\frac{1}{x}\right) =4$, then what is the value of $\left(x^6+\frac{1}{x^6}\right)$?
Question : If $K+\frac{1}{K}=-3$, then what is the value of $\left(\frac{K^6+1}{K^3}\right)+\left(\frac{K^4+1}{K^2}\right)$?
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $3a^{2}= b^{2}\neq0$, then the value of $\frac{\left (a+b \right)^{3}-\left (a-b \right)^{3}}{\left (a+b \right)^{2}+\left (a-b \right)^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile