Question : If $\sin \theta+\cos \theta=\frac{\sqrt{3}-1}{2 \sqrt{2}}$, then what is the value of $\tan \theta+\cot \theta$?
Option 1: $8(\sqrt{3}-2)$
Option 2: $12(\sqrt{3}-2)$
Option 3: $12(\sqrt{3}+2)$
Option 4: $8(\sqrt{3}+2)$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $8(\sqrt{3}-2)$
Solution : Given, $\sin \theta+\cos \theta=\frac{\sqrt{3}-1}{2 \sqrt{2}}$ Squaring both sides, we get, ⇒ $(\sin \theta+\cos \theta)^2=(\frac{\sqrt{3}-1}{2 \sqrt{2}})^2$ ⇒ $\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta=\frac{3+1-2\sqrt3}{8}$ ⇒ $1+2\sin\theta\cos\theta=\frac{4-2\sqrt{3}}{8}$ ⇒ $2\sin\theta\cos\theta=\frac{2-\sqrt3}{4}-1$ ⇒ $2\sin\theta\cos\theta=\frac{2-\sqrt3-4}{4}$ ⇒ $\sin\theta\cos\theta=\frac{-2-\sqrt3}{8}$ Now consider, $\tan \theta+\cot \theta$ $=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$ $=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$ $=\frac{1}{\sin\theta\cos\theta}$ $=\frac{1}{\frac{-2-\sqrt3}{8}}$ $=\frac{-8}{2+\sqrt3}$ Rationalizing it, we get, $=\frac{-8}{2+\sqrt3}\times\frac{2-\sqrt3}{2-\sqrt3}$ $=\frac{-8(2-\sqrt3)}{2^2-(\sqrt3)^2}$ $=\frac{8(\sqrt{3}-2)}{4-3}=8(\sqrt3-2)$ Hence, the correct answer is $8(\sqrt3-2)$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Question : If $7 \sin ^2 \theta+4 \cos ^2 \theta=5$ and $\theta$ lies in the first quadrant, then what is the value of $\frac{\sqrt{3} \sec \theta+\tan \theta}{\sqrt{2} \cot \theta-\sqrt{3} \cos \theta}$?
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile