Question : If $x+\frac{1}{x}=\sqrt{13}$, then what is the value of $x^{5}-\frac{1}{x^{5}}$?
Option 1: $169$
Option 2: $169\sqrt3$
Option 3: $393$
Option 4: $507$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $393$
Solution : Given: $x + \frac{1}{x} = \sqrt{13}$ Squaring both sides, $(x + \frac{1}{x})^2=13$ $x^2+\frac{1}{x^2}=13-2$ $x^2+\frac{1}{x^2}=11$ Also, $x^2+\frac{1}{x^2}-2=11-2$ $(x - \frac{1}{x})^2=3^2$ $x - \frac{1}{x}=3$ Cubing both sides $x^3- \frac{1}{x^3}=3^3+3\times 3 = 36$ Now, $(x^3- \frac{1}{x^3}) (x^2+\frac{1}{x^2}) = 36\times 11$ $x^5-\frac{1}{x^5} + x -\frac{1}{x} =396$ $x^5-\frac{1}{x^5} + 3 = 396$ $\Rightarrow x^5-\frac{1}{x^5} =393$ Hence, the correct answer is 393.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\sqrt{\frac{2+\sqrt3}{2-\sqrt3}}$, then what is the value of $(x^{2}+x-9)$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $x-\frac{1}{x}=1$, then what is the value of $\left (\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1} \right)\;$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile