1 View

Question : If $\mathrm{p}=7+4 \sqrt{3}$, then what is the value of $\frac{\mathrm{p}^6+\mathrm{p}^4+\mathrm{p}^2+1}{\mathrm{p}^3}$?

Option 1: 2617

Option 2: 2167

Option 3: 2716

Option 4: 2176


Team Careers360 7th Jan, 2024
Answer (1)
Team Careers360 21st Jan, 2024

Correct Answer: 2716


Solution : Given, $p=7+4\sqrt3$
⇒ $\frac1p=\frac{1}{7+4\sqrt3}$
⇒ $\frac1p=\frac{1}{7+4\sqrt3}\times\frac{7-4\sqrt3}{7-4\sqrt3}$
⇒ $\frac{1}{p}=\frac{7-4\sqrt3}{(7+4\sqrt3)(7-4\sqrt3)}$
We know $(a+b)(a-b)=a^2-b^2$
⇒ $\frac1p=\frac{7-4\sqrt3}{7^2-(4\sqrt3)^2}$
⇒ $\frac1p=\frac{7-4\sqrt3}{49-48}$
⇒ $\frac1p=7-4\sqrt3$
⇒ $p+\frac1p=7+4\sqrt3+7-4\sqrt3=14$
Now, consider $\frac{p^6+p^4+p^2+1}{p^3}$
$=\frac{p^6+1}{p^3}+\frac{p^4+p^2}{p^3}$
$=(p^3+\frac{1}{p^3})+(p+\frac{1}{p})$
We know, $(a+b)^3=a^3+b^3+3ab(a+b)$
So, $=(p^3+\frac{1}{p^3})+(p+\frac{1}{p})=(p+\frac1p)^3-3(p+\frac{1}{p})+(p+\frac1p)$
$=(p+\frac1p)^3-2(p+\frac{1}{p})$
$=14^3-2\times14$
$=2744-28$
$=2716$
Hence, the correct answer is 2716.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books