Question : If $a+\frac{1}{a}=5$, then what is the value of $a^3+\frac{1}{a^3} ?$
Option 1: 110
Option 2: 15
Option 3: 105
Option 4: –10
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 110
Solution : Given, $a+\frac{1}{a}=5$ Cubing both sides, $(a+\frac{1}{a})^3=125$ ⇒ $a^3+\frac{1}{a^3}+3(a)(\frac{1}{a})(a+\frac{1}{a})=125$ ⇒ $a^3+\frac{1}{a^3}+3(1)(5)=125$ ⇒ $a^3+\frac{1}{a^3}=110$ Hence, the correct answer is 110.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : If $3\sqrt{\frac{1-a}{a}}+9=19-3\sqrt{\frac{a}{1-a}};$ then, what is the value of $a?$
Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Question : If $(-\frac{1}{2}) \times (x-5) + 3 = -\frac{5}{2}$, then what is the value of $x$?
Question : If $\frac{3–5x}{2x}+\frac{3–5y}{2y}+\frac{3–5z}{2z}=0$, the value of $\frac{2}{x}+\frac{2}{y}+\frac{2}{z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile