Question : If $\sec ^2 \mathrm{~A}+\tan ^2 \mathrm{~A}=3$, then what is the value of $\cot \mathrm{A}$?
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $0$
Option 3: $1$
Option 4: $\sqrt{3}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : Given: $\sec ^2\mathrm{A}+\tan ^2 \mathrm{A}=3$ ⇒ $\frac{1}{\cos^2 \mathrm{A}} + \frac{\sin^2\mathrm{A}}{\cos^2\mathrm{A}} = 3$ ⇒ $1+\sin^2\mathrm{A} = 3\cos^2\mathrm{A}$ ⇒ $\sin^\mathrm{A} + \cos^2\mathrm{A} + \sin^2\mathrm{A} = 3 \cos^2\mathrm{A}$ ⇒ $2\sin^2\mathrm{A} = 2\cos^2\mathrm{A}$ ⇒ $\frac{\sin^2\mathrm{A}}{\cos^2\mathrm{A}} = 1$ ⇒ $\tan^2\mathrm{A} = 1$ ⇒ $\tan\mathrm{A} = 1$ $\therefore$ $\cot\mathrm{A} = 1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\sec A=\frac{5}{4}$, then the value of $\frac{\tan A}{1+\tan ^2 A}-\frac{\sin A}{\sec A}$ is:
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Question : If $\mathrm{p}=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $\mathrm{q}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ then, find the value of $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}$.
Question : The value of $\sqrt{\frac{1+\cos A}{1-\cos A}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile