Question : If $\sin \theta = \frac{3}{11}$, then what is the value of $\cot \theta$?
Option 1: $\frac{3 \sqrt{7}}{11}$
Option 2: $\frac{4 \sqrt{7}}{11}$
Option 3: $\frac{4 \sqrt{7}}{3}$
Option 4: $\frac{3 \sqrt{7}}{28}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4 \sqrt{7}}{3}$
Solution : Given, $\sin \theta=\frac{3}{11}$ We know, $\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$ Using Pythagoras theorem, we get, $\small (\text{Hypotenuse})^2 = (\text{Base})^2 + (\text{Perpendicular})^2$ Let base = $b$ ⇒ $11^2 = b^2 + 3^2$ ⇒ $b^2 = 121 - 9$ ⇒ $b = \sqrt{112} = 4\sqrt7$ ⇒ $\cot\theta = \frac{\text{base}}{\text{perpendicular}} = \frac{4\sqrt7}{3}$ Hence, the correct answer is $\frac{4\sqrt7}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile