Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Option 1: $\frac{\mathrm{K}^4-16 \mathrm{~K}^2+32}{16}$
Option 2: $\frac{\mathrm{K}^4-8 \mathrm{~K}^2-36}{32}$
Option 3: $\frac{\mathrm{K}^4-8 \mathrm{~K}^2-32}{16}$
Option 4: $\frac{\mathrm{K}^4-8 \mathrm{~K}^2+32}{16}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $\frac{\mathrm{K}^4-16 \mathrm{~K}^2+32}{16}$
Solution :
$x + \frac{1}{x} = \frac{K}{2}$
$⇒\left(x + \frac{1}{x}\right)^2 = \mathrm{\left(\frac{K}{2}\right)^2}$
$⇒x^2 + 2 + \frac{1}{x^2} = \mathrm{\frac{K^2}{4}}$
$⇒x^2 + \frac{1}{x^2} =\mathrm{ \frac{K^2}{4} - 2}$
Now, square this equation:
$⇒\left(x^2 + \frac{1}{x^2}\right)^2 = \mathrm{\left(\frac{K^2}{4} - 2\right)^2}$
$⇒x^4 + 2 + \frac{1}{x^4} = \mathrm{\left(\frac{K^2}{4} - 2\right)^2}$
$⇒x^4 + \frac{1}{x^4} = \mathrm{\left(\frac{K^2}{4} - 2\right)^2 - 2}$
$⇒\frac{x^8+1}{x^4} =\mathrm{(\frac{K^4}{16}-K^2+4)-2}$
$⇒\frac{x^8+1}{x^4} =\mathrm{(\frac{K^4}{16}-K^2+2)}$
$\therefore \frac{x^8+1}{x^4} =\mathrm{(\frac{K^4-16K^2+32}{16})}$
Hence, the correct answer is $\mathrm{(\frac{K^4-16K^2+32}{16})}$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.