Question : If $\sin \mathrm{C}=\frac{9}{10}$, then what is the value of $\cos ^2 \mathrm{C}$?
Option 1: $\frac{19}{100}$
Option 2: $\frac{81}{\sqrt{19}}$
Option 3: $\frac{19}{10}$
Option 4: $\frac{\sqrt{19}}{100}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{19}{100}$
Solution : We know, $\sin^2 \mathrm{C} + \cos^2 \mathrm{C} = 1$ $⇒\cos^2 \mathrm{C} = 1 - \sin^2 \mathrm{C}$ Substituting $\sin \mathrm{C} = \frac{9}{10}$, $⇒\cos^2 \mathrm{C} = 1 - \left(\frac{9}{10}\right)^2 = 1 - \frac{81}{100} = \frac{19}{100}$ Hence, the correct answer is $ \frac{19}{100}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\theta$ is an acute angle and $\sin \theta=\frac{13}{19}$, what is the value of $\cos \theta?$
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile