Question : If $x+\frac{1}{x}=-2$, then what is the value of $x^7+x^{-7}+x^2+x^{-2} ?(\mathrm{x}<0)$
Option 1: 4
Option 2: 2
Option 3: 1
Option 4: 0
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : $x+\frac{1}{x}=-2$ $⇒x^2+1=-2x$ $⇒x^2+2x+1=0$ $⇒(x+1)^2 = 0$ $\therefore x = -1$ By putting $x=-1$, we get, $x^7+x^{-7}+x^2+x^{-2}=(-1)^7+(-1)^{-7}+(-1)^2+(-1)^{-2} = -2+2 = 0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{1+\mathrm{x}}{1-\mathrm{x}^2} \div \frac{1+\mathrm{x}}{1-\mathrm{x}^4}-\frac{1-\mathrm{x}^4}{1-\mathrm{x}} \times \frac{1+\mathrm{x}}{1-\mathrm{x}^2}$?
Question : If $\mathrm{m}-\frac{1}{\mathrm{~m}}=7$, then what is the value of $\mathrm{m}^2+\frac{1}{\mathrm{~m}^2}$?
Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile