Question : If $a+\frac{1}{a}=8$, then what is the value of $\frac{1}{a^4}+a^4 ?$
Option 1: 4098
Option 2: 3846
Option 3: 3842
Option 4: 4094
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 3842
Solution : $(a + \frac{1}{a}) = 8$ Squaring both sides, we get, ⇒ $ (a^2 + \frac{1}{a^2}) + 2 = 64$ ⇒ $(a^2 + \frac{1}{a^2}) = 62$ Squaring both sides again, we get, ⇒ $a^4 + \frac{1}{a^4} + 2 = 3844$ ⇒ $a^4 + \frac{1}{a^4} = 3844 - 2$ ⇒ $a^4 + \frac{1}{a^4} = 3842$ Hence, the correct answer is 3842.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a+\frac{1}{a}=2$ and $b+\frac{1}{b}=-2$, then what is the value of $a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2} ?$
Question : If $a^2+\frac{1}{a^2}=\frac{7}{3}$, then what is the value of $\left(a^3-\frac{1}{a^3}\right)?$
Question : If $\sec A=\frac{17}{15}$, then what is the value of $\cot A$?
Question : Find the value of the given expression: $\frac{(4\frac{1}{3}+3\frac{1}{3}\times 1\frac{4}{5}\div 3\frac{3}{4}\times (1\frac{1}{2}+1\frac{1}{3}))}{(\frac{2}{3}\div \frac{5}{6}\times \frac{2}{3})}$
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile