Question : If $-\sin \theta+\operatorname{cosec} \theta=6$, then what is the value of $\sin \theta+\operatorname{cosec} \theta$ ?
Option 1: $6$
Option 2: $\sqrt{40}$
Option 3: $\sqrt{34}$
Option 4: $\sqrt{38}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{40}$
Solution : $-\sin \theta + \operatorname{cosec} \theta = 6$ $⇒-\sin \theta + \frac{1}{\sin \theta} = 6$ $⇒ 1 - \sin^2 \theta = 6 \sin \theta$ $⇒ \sin^2\theta + 6\sin \theta - 1 = 0$ Applying the Sridhar Acharya formula: $x = \frac{(-b \pm \sqrt{b^2 - 4ac)}}{2a}$ Here $x = \sin \theta, a = 1, b = 6, c = -1$ $⇒ \sin \theta = \frac{-6 \pm \sqrt{6^2 - 4 \times (-1)}}{2}$ $⇒ \sin \theta = \frac{-6 \pm \sqrt{40}}{2}$ $⇒ \sin \theta =-3 \pm \sqrt{10}$ $⇒ \sin \theta + \operatorname{cosec} \theta = \sin \theta + 6 +\sin \theta$ (since, $\operatorname{cosec} \theta = 6 +\sin \theta$ ) $⇒ \sin \theta + \operatorname{cosec} \theta = 2\sin \theta +6$ $⇒ \sin \theta + \operatorname{cosec} \theta = 2(-3 \pm \sqrt{10}) + 6$ $⇒ \sin \theta + \operatorname{cosec} \theta = -6 \pm 2\sqrt{10} + 6$ $⇒ \sin \theta + \operatorname{cosec} \theta = \pm 2\sqrt{10}$ $⇒ \sin \theta + \operatorname{cosec} \theta = \pm \sqrt{40}$ Hence, the correct answer is $+ \sqrt{40}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Question : If $\cos \theta+\sin \theta=\sqrt{2}$, then what is the value of $\sec \theta \operatorname{cosec} \theta$ ?
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile