Question : If $\operatorname{cosec} \theta+\cot \theta=\mathbf{s}$, then what is the value of $\cos \theta$?
Option 1: $\frac{s^2-1}{s^2+1}$
Option 2: $\frac{s^2+1}{s^2-1}$
Option 3: $\frac{s^2-1}{2 s}$
Option 4: $\frac{2 s}{s^2+1}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{s^2-1}{s^2+1}$
Solution : Given, $\operatorname{cosec} \theta+\cot \theta=\mathbf{s}$ We know, $\cot\theta = \frac{\cos\theta}{\sin\theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin\theta}$ ⇒ $\frac{1}{\sin\theta}+\frac{\cos\theta}{\sin\theta}=s$ ⇒ $\frac{1+\cos\theta}{\sin\theta}=s$ Squaring both sides, we get ⇒ $\frac{(1+\cos\theta)^2}{\sin^2\theta}=s^2$ We know, $\cos^2\theta+\sin^2\theta=1$ ⇒ $\frac{1+\cos^2\theta+2\cos\theta}{1-\cos^2\theta}=s^2$ Applying componendo and dividendo, ⇒ $\frac{1+\cos^2\theta+2\cos\theta+1-\cos^2\theta}{1+\cos^2\theta+2\cos\theta-(1-\cos^2\theta)}=\frac{s^2+1}{s^2-1}$ ⇒ $\frac{1+\cos^2\theta+2\cos\theta+1-\cos^2\theta}{1+\cos^2\theta+2\cos\theta-1+\cos^2\theta}=\frac{s^2+1}{s^2-1}$ ⇒ $\frac{2+2\cos\theta}{2\cos^2\theta+2\cos\theta}=\frac{s^2+1}{s^2-1}$ ⇒ $\frac{2(1+\cos\theta)}{2\cos\theta(\cos\theta+1)}=\frac{s^2+1}{s^2-1}$ ⇒ $\frac{1}{\cos\theta}=\frac{s^2+1}{s^2-1}$ ⇒ $\cos\theta=\frac{s^2-1}{s^2+1}$ Hence, the correct answer is $\frac{s^2-1}{s^2+1}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile