Question : If $x+\frac{1}{x}=2 K$, then what is the value of $x^4+\frac{1}{x^4}$?
Option 1: $16 {K}^4-16 {K}^2-1$
Option 2: $8 {K}^4+4 {K}^2-1$
Option 3: $16 {K}^4-16 {K}^2+2$
Option 4: $16 {K}^4-4 {K}^2-1$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $16 {K}^4-16 {K}^2+2$
Solution : $x+\frac{1}{x}=2 K$ $⇒(x+\frac{1}{x})^2=(2 K)^2$ $⇒x^2+\frac{1}{x^2}+2 = 4K^2$ $⇒x^2+\frac{1}{x^2} = 4K^2 -2$ $⇒(x^2+\frac{1}{x^2})^2 = (4K^2 -2)^2$ $⇒x^4+\frac{1}{x^4}+2 = 16K^4-16K^2+4$ $⇒x^4+\frac{1}{x^4} = 16K^4-16K^2+2$ Hence, the correct answer is $16K^4-16K^2+2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Question : If $x^2+\frac{1}{x^2}=4$, then what is the value of $x^4+\frac{1}{x^4}$?
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile