Question : If $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=1$, then what is the value of $\theta$?
Option 1: $30^{\circ}$
Option 2: $90^{\circ}$
Option 3: $0^{\circ}$
Option 4: $45^{\circ}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $90^{\circ}$
Solution :
$\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=1$
⇒ $\frac{\sin \theta}{\frac{\cos \theta}{\sin \theta} +\frac{1}{\sin \theta}}=1$
⇒ $\frac{\sin \theta}{\frac{1+\cos \theta}{\sin \theta}}=1$
⇒ $\frac{\sin^2 \theta}{1+\cos \theta}=1$
⇒ $\sin^2 \theta = 1+\cos \theta$
⇒ $1-\sin^2 \theta+\cos \theta = 0$
⇒ $\cos^2 \theta + \cos \theta = 0$ ($\because$ $ \sin^2 \theta+\cos^2 \theta =1$ )
⇒ $\cos \theta(1+ \cos \theta) = 0$
⇒ $\cos \theta= 0$ or $\cos \theta = –1$
⇒ $\theta = 90^{\circ}$ or $180^{\circ}$
Hence, the correct answer is $90^{\circ}$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.