Question : If $\frac{1}{(x-2)}+x=8$, then what is the value of $\frac{1}{(x-2)^2}+(x-2)^2$?
Option 1: 38
Option 2: 36
Option 3: 40
Option 4: 34
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 34
Solution : Given: $\frac{1}{(x-2)}+x=8$ Subtracting 2 from both sides, we get: ⇒ $\frac{1}{(x-2)}+x-2=6$ Squaring both sides, we get, ⇒ $\frac{1}{(x-2)^2}+(x-2)^2+2\times \frac{1}{(x-2)} \times(x-2) = 36$ ⇒ $\frac{1}{(x-2)^2}+(x-2)^2=36-2$ ⇒ $\frac{1}{(x-2)^2}+(x-2)^2=34$ Hence, the correct answer is 34.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Question : If $x+\frac{1}{x}=\mathrm{\frac{K}{2}}$, then what is the value of $\frac{x^8+1}{x^4} ?$
Question : If $x^2+\frac{1}{x^2}=7$, then what is the value of $x^3+\frac{1}{x^3}$?
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $\frac{x^2-1}{x}=8$, then what is the value of $\frac{x^6-1}{x^3}=?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile