Question : If $P=\frac{(\sqrt7-\sqrt6)}{(\sqrt7+\sqrt6)}$, then what is the value of $(P+\frac{1}{P})?$
Option 1: 12
Option 2: 13
Option 3: 24
Option 4: 26
Correct Answer: 26
Solution : $P=\frac{(\sqrt7-\sqrt6)}{(\sqrt7+\sqrt6)}$ $P=\frac{(\sqrt7-\sqrt6)}{(\sqrt7+\sqrt6)}\times \frac{(\sqrt7-\sqrt6)}{(\sqrt7-\sqrt6)}$ $P=7+6-2\sqrt{42} = 13-2\sqrt{42}$ $\frac{1}{P} = \frac{1}{13-2\sqrt{42}}\times \frac{13+2\sqrt{42}}{13+2\sqrt{42}}$ $P=13+2\sqrt{42}$ $P+\frac{1}{P} = 13-2\sqrt{42}+13+2\sqrt{42}=26$ Hence, the correct answer is 26.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $(N+\frac{1}{N})$?
Question : If $N= \frac{(\sqrt6-\sqrt5)}{(\sqrt6+\sqrt5)}$, then what is the value of $(N+\frac{1}{N})$?
Question : What is the simplified value of $\left(1-\frac{1}{4-\frac{2}{1+\frac{1}{\frac{1}{3}+2}}}\right) \times \frac{15}{16} \div \frac{2}{3}$ of $2 \frac{1}{4}-\frac{3+4}{3^3+4^3}$
Question : If $\frac{1}{N}=\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$, what is the value of $N$?
Question : What is the simplified value of: $7 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}-\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)-\frac{5}{24}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile