Question : If $x^2+\frac{1}{x^2}=4$, then what is the value of $x^4+\frac{1}{x^4}$?
Option 1: 16
Option 2: 14
Option 3: 12
Option 4: 20
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 14
Solution : Given that $x^2+\frac{1}{x^2}=4$, Squaring both sides, we get, $⇒(x^2+\frac{1}{x^2})^2 = 4^2$ $⇒x^4 + 2 + \frac{1}{x^4} = 16$ $⇒x^4 + \frac{1}{x^4} = 16 - 2 = 14$ Hence, the correct answer is 14.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x+\frac{1}{x}=2 K$, then what is the value of $x^4+\frac{1}{x^4}$?
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Question : If $\small x-\frac{1}{x}=2$, then the value of $x^{3}-\frac{1}{x^{3}}$ is:
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile