Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Option 1: $3 \sqrt{2}$
Option 2: $2 \sqrt{2}$
Option 3: $5 \sqrt{2 }$
Option 4: $4 \sqrt{2}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3 \sqrt{2}$
Solution : Given, $x^{4}+\frac{1}{x^{4}}=16$ Adding 2 on both sides, $x^{4}+\frac{1}{x^{4}}+2=16+2$ ⇒ $x^{4}+\frac{1}{x^{4}}+2(x^2× \frac{1}{x^2})=18$ ⇒ $(x^{2}+\frac{1}{x^{2}})^2=18$ ⇒ $x^{2}+\frac{1}{x^{2}}=3\sqrt{2}$ Hence, the correct answer is $3\sqrt{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Question : If $x=\sqrt3+\frac{1}{\sqrt3}$, then the value of $(x-\frac{\sqrt{126}}{\sqrt{42}})(x-\frac{1}{x-\frac{2\sqrt3}{3}})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile