Question : If $\cos A=\frac{1}{2}, 0 \leq A \leq 90^{\circ}$, then what is the value of sin (180 - A)?
Option 1: $\frac{1}{2}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $1$
Correct Answer: $\frac{\sqrt{3}}{2}$
Solution : According to the question sin 2 A + cos 2 A = 1 ⇒ sin$^{2} A + \frac{1}{2}^{2}$ = 1 ⇒ sin$^{2} A + \frac{1}{4}$ = 1 ⇒ sin$^{2} A = 1 - \frac{1}{4}$ = $\frac{3}{4}$ ⇒ Sin A = $\frac{\sqrt{3}}{2}$ Now, ⇒ sin(180 − A) = sin A = $\frac{\sqrt{3}}{2}$ Hence, the correct answer is $\frac{\sqrt{3}}{2}$
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos A=\frac{15}{17}, 0 \leq A \leq 90^{\circ}$, then the value of $\cot(90° - A)$ is:
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile