Question : If $m x^m-n x^n=0$, then what is the value of $\frac{1}{x^m+x^n}+\frac{1}{x^m-x^n}$ terms of $x^n$ is: Where $x,m,n$ are $>0$
Option 1: $\frac{2 m n}{x^n(n^2+m^2)}$
Option 2: $\frac{2 m n }{x^n(m^2-n^2)}$
Option 3: $\frac{2 m n}{x^n\left(m^2+n^2\right)}$
Option 4: $\frac{2 m n }{x^n(n^2-m^2)}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2 m n }{x^n(n^2-m^2)}$
Solution : Given, $mx^m − nx^n = 0$ ⇒ $mx^m = nx^n$ ⇒ $\frac{x^m}{x^n} = \frac{n}{m}$ Now, $\frac{1}{x^m+x^n}+\frac{1}{x^m-x^n}$ = $\frac{x^m-x^n + x^m+x^n}{(x^m+x^n)(x^m-x^n)}$ = $\frac{2x^m}{(x^m+x^n)(x^{2m}-x^n)}$ = $\frac{n-m+n+m}{(n+m)(n-m)}$ = $\frac{2n}{(n^2−m^2)}$ Now, the value of $\frac{1}{x^m+x^n}+\frac{1}{x^m−x^n}$ in terms of $x^n$ = $\frac{2n}{n^2-m^2}\times\frac{x^n}{x^n}$ = $\frac{2nm}{x^n(n^2-m^2)}$ [As $x^n=m$] Hence, the correct answer is $\frac{2mn}{x^n(n^2-m^2)}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $x+y+z=0$, then what is the value of $\frac{\left (3y^{2}+x^{2}+z^{2} \right )}{\left (2y^{2}-xz \right)}$?
Question : If $\frac{1}{x^2+a^2}=x^2-a^2$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile