Question : If $x=\frac{4\sqrt{ab}}{\sqrt a+ \sqrt b}$, then what is the value of $\frac{x+2\sqrt{a}}{x-2\sqrt a}+\frac{x+2\sqrt{b}}{x-2\sqrt b}$(when $a\neq b$)?
Option 1: 0
Option 2: 2
Option 3: 4
Option 4: $\frac{(\sqrt a+\sqrt b)}{(\sqrt a - \sqrt b)}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $x=\frac{4\sqrt ab}{\sqrt a+\sqrt b}$ Equation $=\frac{x+2\sqrt a}{x-2\sqrt a}+\frac{x+2\sqrt b}{x-2\sqrt b}$ Put the value of $x$ in equation: $=\frac{\frac{4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}+2\sqrt{a}}{\frac{4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-2\sqrt a}+\frac{\frac{4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}+2\sqrt{b}}{\frac{4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-2\sqrt b}$ $=\frac{\frac{4\sqrt{ab}+2a+2\sqrt {ab}}{\sqrt{a}+\sqrt{b}}}{\frac{4\sqrt{ab}-2a-2\sqrt {ab}}{\sqrt{a}+\sqrt{b}}}+\frac{\frac{4\sqrt{ab}+2\sqrt {ab}+2b}{\sqrt{a}+\sqrt{b}}}{\frac{4\sqrt{ab}-2\sqrt {ab}-2b}{\sqrt{a}+\sqrt{b}}}$ $=\frac{\frac{4\sqrt{ab}+2a+2\sqrt {a}b}{\sqrt{a}+\sqrt{b}}}{\frac{4\sqrt{ab}-2a-2\sqrt {a}b}{\sqrt{a}+\sqrt{b}}}+\frac{\frac{4\sqrt{ab}+2\sqrt {ab}+2b}{\sqrt{a}+\sqrt{b}}}{\frac{4\sqrt{ab}-2\sqrt {a}b-2b}{\sqrt{a}+\sqrt{b}}}$ $=\frac{4\sqrt{ab}+2a+2\sqrt {a}b}{4\sqrt{ab}-2a-2\sqrt {ab}}+\frac{4\sqrt{ab}+2\sqrt {ab}+2b}{4\sqrt{ab}-2\sqrt {ab}-2b}$ $=\frac{2}{2}\left [\frac{2\sqrt{ab}+a+\sqrt {a}b}{2\sqrt{ab}-a-\sqrt {a}b} \right ]+\frac{2}{2}\left[\frac{2\sqrt{ab}+\sqrt {ab}+b}{2\sqrt{ab}-\sqrt {a}b-b}\right]$ $=\frac{3\sqrt{ab}+a}{\sqrt{ab}-a}+\frac{3\sqrt{ab}+b}{\sqrt{ab}-b}$ $=\frac{\frac{3\sqrt{ab}+a}{\sqrt a}}{\frac{\sqrt{ab}-a}{\sqrt a}}+\frac{\frac{3\sqrt{ab}+b}{\sqrt b}}{\frac{\sqrt{ab}-a}{\sqrt b}}$ $=\frac{3\sqrt b+\sqrt a}{\sqrt b -\sqrt a }+\frac{3\sqrt a+\sqrt b}{\sqrt a -\sqrt b }$ $=\frac{3\sqrt b+\sqrt a}{\sqrt b -\sqrt a }-\frac{3\sqrt a+\sqrt b}{\sqrt b -\sqrt a }$ $=\frac{3\sqrt b+\sqrt a-3\sqrt a -\sqrt b}{\sqrt b-\sqrt a}$ $=\frac{2\sqrt b-2\sqrt a}{\sqrt b-\sqrt a}$ $=\frac{2(\sqrt b-\sqrt a)}{\sqrt b-\sqrt a}$ $=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\frac{1}{\sqrt a}-\frac{1}{\sqrt b}=0$, then the value of $\frac{1}{a}+\frac{1}{ b}$ is:
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile