Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Option 1: $90^{\circ}$
Option 2: $45^{\circ}$
Option 3: $60^{\circ}$
Option 4: $30^{\circ}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $60^{\circ}$
Solution : Given: $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right) = 4$ ⇒ $\frac{\cos A(1+\sin A) + \cos A(1-\sin A)}{(1-\sin A)(1+\sin A)} = 4$ ⇒ $\cos A + \cos A \sin A + \cos A - \cos A \sin A = 4(1-\sin^2A)$ ⇒ $2\cos A = 4 \cos^2 A$ ⇒ $\cos A = \frac{1}{2} =\cos 60^\circ$ ⇒ $A = 60^\circ$ Hence, the correct answer is $60^\circ$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\sin\left ( 2a+45^{\circ} \right )=\cos\left ( 30^{\circ}-a \right )$ where $0^{\circ}< a< 90^{\circ}$, then the value of a is:
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Question : If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\tan 5 \theta+\operatorname{cosec} \frac{5 \theta}{2}}$?
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Question : The expression $\frac{\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)(\cot \theta+1) \cos \theta}{\left(\sin ^4 \theta+\cos ^4 \theta\right)(1+\tan \theta) \operatorname{cosec} \theta}-1,0^{\circ}<\theta<90^{\circ}$, equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile