Question : If $\sin^2 \theta \cos^2 \theta=\frac{2}{9}$, then what will be the value of $\operatorname{cosec}^2 \theta+\sec ^2 \theta$?
Option 1: $\frac{7}{2}$
Option 2: $\frac{5}{2}$
Option 3: $\frac{9}{2}$
Option 4: $9 \sqrt{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{9}{2}$
Solution : Given, $\sin^2 \theta \cos^2 \theta=\frac{2}{9}$ Now, $\operatorname{cosec}^2 \theta+\sec ^2 \theta = \frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta}$ $⇒\operatorname{cosec}^2 \theta+\sec ^2 \theta = \frac{\sin^2 \theta+\cos^2 \theta}{\sin^2 \theta \cos^2 \theta}$ We know that $\sin^2 \theta+\cos^2 \theta=1$ So, $\operatorname{cosec}^2 \theta+\sec ^2 \theta = \frac{1}{\frac{2}{9}}$ $\therefore\operatorname{cosec}^2 \theta+\sec ^2 \theta = \frac{9}{2}$ Hence, the correct answer is $\frac{9}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $ \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}+\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=$________.
Question : If $\sin \theta + \operatorname{cosec} \theta = \sqrt{5}$, the value of $\sin^3 \theta + \operatorname{cosec}^3 \theta = $?
Question : If $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$, then the value of $(\operatorname{cosec}\theta-\sin\theta)$ is:
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile