Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Option 1: 14
Option 2: 16
Option 3: 7
Option 4: 8
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 7
Solution : $(z+\frac{1}{z})=4$ Squaring both sides, we get: $(z+\frac{1}{z})^2=4^2$ ⇒ $z^2+\frac{1}{z^2}+2×z×\frac{1}{z}=16$ ⇒ $z^2+\frac{1}{z^2}=16-2$ ⇒ $z^2+\frac{1}{z^2}=14$ Thus, $\frac{1}{2}(z^2+\frac{1}{z^2})$ $=\frac{1}{2}×14 = 7$ Hence, the correct answer is 7.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Question : If $\left(4y-\frac{4}{y}\right)=11$, find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile